

Phytochemistry, 1971, Vol. 10, p. 2541. Pergamon Press. Printed in England.

FERNS
ASPIDIACEAE

THE PHLOROGLUCINOL DERIVATIVES OF *DR YOPTERZS*
POL YLEPZS

SUEO HISADA, KOICHI SHIRAISHI and ISAO INAGAKI

Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori,
Mizuho-ku, Nagoya, Japan

(Received 29 March 1971)

Plant. *Dryopteris polylepis* (Fr. et Sav.) C. Chr.

Uses. Medicinal.¹

Previous work. On the sister species.²

Rhizomes. Dried material was percolated with Et_2O , and the extract was evaporated. The raw filicin obtained by method of Aebi³ was dissolved in Et_2O . Upon concentration, crystalline material precipitated. Flavaspidic acid A B (major compound): $\text{C}_{22}\text{H}_{26}\text{O}_8$, yellow needles, m.p., mixed m.p. with synth. flavaspidic acid A B, NMR, UV, IR, TLC (solvent. $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$, 7:3:1, lower) and alkaline cleavage. Mother liquor after removal of flavaspidic acid A B was evaporated and was dissolved in EtOAc .

Upon concentration, crystalline material precipitated. Dryocrassin : m.p., mixed m.p. with dryocrassin from *D. crassirhizoma*,⁴ IR and TLC. Mother liquor after removal of dryocrassin was chromatographed on silica, eluted by cyclohexane- CHCl_3 (3:2). Albaspidin B B: m.p., mixed m.p. with authentic sample, IR and TLC. Filixic acid: m.p., mixed m.p. with authentic sample, IR and TLC.

Acknowledgements-The authors are indebted to Miss T. Yamagishi and Mrs. S. Ito for elemental analysis

¹ S. HISADA, *Soyakugaku zasshi* **16**, 46 (1962).

² S. HISADA and Y. NORO, *Yakugaku zasshi* **81**, 1270 (1961).

³ A. AEBI, J. BÜCHI and A. KAPOOR, *Helv. Chim. Acta* **40**, 266 (1957).

⁴ G. SHIMADA, Y. NORO, K. OKUDA, I. INAGAKI, S. HISADA, T. TANAKA and H. YOKOHASHI, Abstracts of papers, Meeting of The Pharmacognostical Society of Japan, p. 33, Fukuoka (1968).

Phytochemistry, 1971, Vol. 10, pp. 2541 to 2542. Pergamon Press. Printed in England.

GYMNOSPERMAE
CEPHALOTAXACEAE

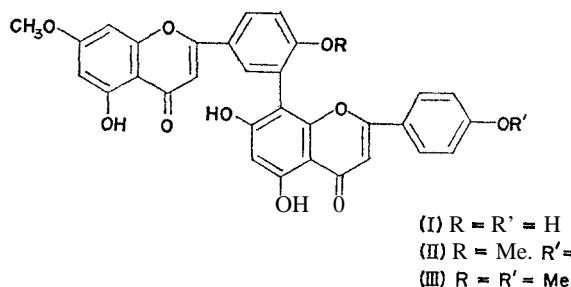
OCCURRENCE OF BIFLAVONYLS IN *CEPHALOTAXUS*

NIZAM U. KHAN, M. ILYAS and W. RAHMAN

Department of Chemistry, Aligarh Muslim University, Aligarh, India

and

M. OKIGAWA and N. KAWANO


Faculty of Pharmaceutical Sciences, Nagasaki University, Nagasaki, Japan

(Received 2 September 1970, in revised form 29 October 1970)

THE FACT that biflavonols are restricted mainly to gymnosperms and that they are very important for their chemical classification stimulated us to investigate *Cephalotaxus* for

biflavonols. *Cephalotaxus drupacea* Sieb. & Zucc and *C. nana* Nakai have already been reported to contain kayaflavone¹ as the sole biflavonol constituent along with apigenin-5-rhamnoglucosyl in the former.² We now wish to report the isolation and characterization of sequoiaflavone(I), ginkgetin(II), sciadopitysin(III) and amentoflavone (in traces only) from the leaf extracts of *C. drupacea* Sieb. and Zucc. An apigenin glycoside was also obtained as a major component, but was not further investigated.

Extraction of fresh leaves followed by solvent fractionation, column chromatography and preparative TLC gave four biflavonols. All gave the same hexamethyl ether which was identical with an authentic sample of amentoflavone hexamethyl ether. NMR studies of the acetates of each component characterized the three individual biflavonols as mentioned above.

The presence of sciadopitysin in *Cephalotaxus* is noteworthy and is in contrast to the previous observation³ that the Taxaceae are characterized by the presence of sciadopitysin whereas *Cephalotaxus* yield kayaflavone. Furthermore, the non-coniferous³ plants of cycadales, Ginkgoales, Taxaceae and Cephalotaxaceae produce biflavonols of only amentoflavone series while the true conifers, with the notable exception of Pinaceae,¹ are characterized by the presence of biflavonols belonging to more than one series.⁴

It may, therefore, be inferred that morphological divergence in the non-coniferous³ plants is accompanied by chemical convergence. It is perhaps possible that similar enzyme systems present in them are synthesizing analogous biflavonols.

Acknowledgements—One of us (NUK) is thankful to UGC. (Govt. of India) for financial assistance and to Professor K. A. Choudhary, Department of Botany, Aligarh Muslim University, Aligarh, for the procurement of plant material.

¹ W. BAKER and W. D. OLLIS, *Recent Developments in the Chemistry of Natural Phenolic Compounds* (edited by W. D. OLLIS), p. 181, Pergamon Press (1961).

² VICTOR PLOUVIER, *C. R. Acad. Sci. Paris*, **263**, 1529 (1966).

³ H. ERDTMAN and T. NORIN, *Progress in the Chemistry of Organic Natural Products* (edited by L. ZECHMEISTER) p. 248, Springer-Verlag (1966).

⁴ W. RAHMAN et al., unpublished work.